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ABSTRACT

Thick rubber components are employed by the Army to carry large loads. In tanks, rubber

covers road wheels and track systems to protect roadways. It is difficult for design engineers to

simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this

study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use

in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical

simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are

first compressed axially and then cyclically loaded about the compressed state. Details of the

algorithm and some computational issues are discussed. The coupled analyses are conducted for

tall and short rubber cylinders both with and without imbedded metal disks.

INTRODUCTION

Rubber is employed to carry large loads in tires, gaskets, and tank track pads. It is also used to

provide damping and system stability in complex mechanical systems such as helicopter rotors.

In these applications, the rubber is typically stiffened by the addition of carbon black. The filled

rubber tends to be a poor conductor of heat, yet it also exhibits very large hysteretic energy loss

during cyclic loading. Also, the mechanical properties of rubber are strongly dependent on

temperature. Faced with the above issues, designers interested in modeling the detailed response

of complex-shaped rubber components need to be able to compute the coupled thermo-
mechanical behavior of rubber.

An example of the importance of understanding the thermo-mechanical response of filled rubber

is given in a series of papers presented at the "Thirty Second Sagamore Army Materials Research

Conference" held a Lake Luzerne, NY in 1985.1-4 In these papers, hysteretic heating, thermo-

mechanical degradation, and fatigue of rubber-coated road wheels and tank track pads are all

discussed. Uncoupled thermo-mechanical finite element analyses, and sensitivity studies were

conducted with finite element codes. It was observed that the viscoelastic properties and the

shape of the rubber solid are the most important factors in determining temperature rise. 1 The

degradation studies indicate that the failure of cyclically loaded "rubber-like" polyurethane

blocks depends on the hard segment transition temperature. 2 Experiments were conducted which

1This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United
States.



provedthat the large strainhystereticheatingrate doesnot correlatewith the heatingrates
predictedusingthepopularcomplexmodulusmaterialdata.3 Also determinedis the fact that
failureundercyclic loadingcanbe "significantlydifferentfrom that obtainedin constantstrain
ratetesting.''4 Theseconclusionssuggestthat detailedcomputationalsimulationsof largestrain
dynamicloadingof rubber-likesolids,performedaspart of amaterialdegradationstudy,require
accuratemodelingof thelargestrainviscoelasticpropertiesandacouplingof themechanicaland
thermalmodels.

In thispaper,largedeformationrubberviscoelasticityandheattransferfiniteelementmodelsare
coupledandemployedto simulatethehystereticheatingof dynamicallyloadedrubbercylinders.
Thepurposeof the work is to establishandtest a computationaltool for analyzinghysteretic
heatingin rubbercomponents.

Theformulationsfor largestrainrubberviscoelasticityandheattransferemployedin ABAQUS
areoutlinedbelow to facilitatethe descriptionof thethermo-mechanicalcouplingperformedin
this study. Detailed information on these two formulationsand their finite element
implementationis availablein the ABAQUS TheoryManual.s Additional informationon
formulations for rubber viscoelasticityis availablein the literature.6-1° Only moderate
temperaturechangeswere simulatedin this study, so time-temperaturesuperpositionis not
discussed.

RUBBERELASTICITY

The coordinatesof a material point in the referenceconfiguration are indicated by
X={X1,X2,X3} and in the deformedconfigurationby x={xl,x2,x3}. The vector function

x = x(X, t) defines the mapping of points from the reference configuration into the deformed

configuration. The Lagrangian method is employed to describe the deformed solid's energy.

The matematical tools employed are listed in the APPENDIX. The virtual work statement,

excluding inertial effects, for a deformed solid of volume V and surface area S is

fiWi = Is "o_DvdV=I_vrtdS+I_vr fdV (1)
V S V

where fly is a virtual displacement vector, fiWz is the internal energy due to the virtual

displacement, 6Dv is the virtual rate of deformation, t is the traction stress prescribed over S,

and f is the body force vector acting within the volume V, and Vo is the volume in the

undeformed state. When the solid is rubber, the internal energy in Equation (1) is expressed as
follows.

(2)

where U is the strain energy density function defined in this effort as



G°(i -3)+@(Jg = T' 1 -1) 2 (3)

where G o is the instantaneous shear modulus and k o is the instantaneous bulk modulus.

RUBBER VISCOELASTICITY

The present analysis employs the large strain viscoelasticity model adopted in ABAQUS. 5 The

model assumes that stress relaxation can be described by a Prony series. The shear and bulk

moduli are expressed in the form

N -t N -t

G(t)=G +__G_e _ and K(t)=K +__K_e _ (4)
i=1 i=1

where G o = G(t = 0), K o = K(t = 0), and v i denote relaxation time constants. The constitutive

model employed is a BKZ-like model in which the deviatoric, s D, and hydrostatic, s H, stresses

are determined as follows.

and

sD(t)=sg(t)_SYM gi ft V-l(t__)sg(t__)Vt(t__)e_ d_
.= t-i J_=o t

(5)

N t -_

(t)-
_ =0

where g_ = G_/G o , k_ =/(1. / K0, and F t (t-_ ) is the deformation gradient of the deformed shape

at time t-_ relative to the deformed shape at time t. Approximations are made when

Equations (5) and (6) are integrated so that the entire history does not have to be convoluted.

The approximations depend on the material constants being of Prony series form. Throughout

the remainder of this paper only one term in the Prony series will be employed and the Prony

series subscripts will be dropped.

HEAT TRANSFER

The variational statement of the energy balance equation for heat transfer, together with Fourier's

law, for a deformed solid of volume V, and surface area S is:

Ipdr° dv+f k --°dv=I o dv+I OqdS
v dt :v Ox Ox v s

(7)

where 0 is the temperature, U o is the internal thermal energy, p is the mass density, q is the

heat flux per unit area, r is the heat supplied per unit volume, k is a conductivity matrix, and



60 is a virtual temperaturefield satisfyingthe essentialboundaryconditions.Equation(7) is
usedto buildthetransientheattransferfiniteelementequationsfor therubbersolid.

Finiteelementdiscretizationof themechanicalandthermalvariationalstatements,Equations(1)
and (7), resultsin systemsof time dependentdifferentialequationswhich approximatethe
mechanicalandthermalresponseof thesolid. It is difficult to computethe viscoelasticenergy
dissipatedperunit timefor theconstitutivemodeldescribedabove.Thismechanicallygenerated
energydissipationis requiredif one needsto couple the mechanicaland thermalanalyses.
Belowwe investigateapproximatingtheenergydissipationwith a simpleformulainvolvingthe
viscouscomponentsof stress.Theformulais of thesameform asthedissipationformulafor a
Maxwellmodel.

ANALYTICAL

Themathematicalrelationfor computingtheenergydissipationperunit timefor a constitutive
modelin historyintegralform involvesa doubleconvolutionintegralin time.11To avoidsucha
difficult computationwe exploit the fact that whenthe relaxationmodulusis in Pronyseries
form, theconvolutionintegralin the BKZ-likeconstitutivemodelcanbe approximatedwith a
finite differenceequationthat is similarin form to thefinite differenceequationfor a Maxwell
solid. Thissuggeststhatweexploretheuseof theMaxwellsolid'sdissipationfunction(whichis
easilycomputed)for approximatingmechanicallyinducedheatingin a BKZ-like viscoelastic
solid.

FINITEDIFFERENCEEQUATIONSFORVISCOUSSTRESSCOMPONENTS

A simplifiedone-dimensionalversionof the finite differenceequations(acrossa time interval
At= t,+1 -t, ) for the evolution of the viscous stress, a v , that is valid for the BKZ-like model

described above is given by 5

{( °O'n+l = -- -- e_ +1 + 1-e _ g+e _ a m (8)

^0
where a k is a viscous stress increment computed at time tk using the relative deformation

gradient between configurations at times tk_1 and tk, and using the instantaneous modulus, Go,

of the material. The analogous finite difference equation for the viscous component of stress in a

Maxwell solid (obtained by employing the trapezoidal method) is given by

!

[_ 2v)

-At

g + e _ a,_ (9)



where [crY+l-Or2) is a stress increment computed using the total strain (i.e., current

configuration's strain) and using the instantaneous modulus of the material.

For a time interval in which the stress increment terms, {...}g, in Equations (8) and (9) are

approximately equal, or in which the stress increment terms have small values relative to the
-At

stress decay term, e _ o,_, the Maxwell model and the BKZ-like model will have stress

histories that are approximately equal. This implies that the dissipation functions will also be

approximately equal.

DISSIPATION FUNCTION

A deformation suddenly imposed at time t = 0 and which is subsequently maintained constant,

produces stress relaxation. When the rubber's relaxation shear modulus is of Prony series form

the energy dissipation per unit volume, r(t), during relaxation is of the form

r(t)= dU_' - -Us_(t : 0+) (10)
dt T

[\

where U_,lt=O +) is the viscoelastic shear energy density which results from the sudden

deformation. Note, the rubber solid is incompressible in this study and there is no dissipation

from the volumetric viscous stresses. In the case of a Maxwell solid, the dissipation per unit

volume, rM,x (t), during a time dependent process is of the form

rM.x(t)- - 2 Us_(t) (11)
T

where Us_(t) is the viscoelastic shear energy density in the Maxwell solid's spring-dashpot leg.

Since the finite difference stress evolution equations in the finite element code used here

(ABAQUS) are similar in form to Maxwell solid equations, we selected to employ the

dissipation function in Equation (11), for estimating hysteretic heating from large strain

viscoelastic deformations. Values of U_,(t) were approximated by assuming the current value of

the viscous stress, sV(t), is derived from a linear internal solid in a Maxwell link which has a

time constant given by _c. The resulting dissipation function is given by

r(t) sV :s_ > 0 (12)
2 gGo_C

where g GO is the viscous shear modulus.



FINITE ELEMENTEMPLOYED

TheABAQUSfiniteelementcodewasemployedto performthecalculations.Thecodeallowed
us to run themechanicalandthermalalgorithmssimultaneouslyin time andto exchangedata
betweenthealgorithms.Wepresentthedetailsfor the2D axisymmetricmodel(theprocedureis
similarfor the3Dsolidmodel.)

The eight-nodehybrid axisyrmnetricCAX8RHT elementwas used, see Figure 1. The
interpolationis biquadraticfor the displacementfield, andbilinear for the temperatureand
pressurefields. Reducedintegrationis alsoemployed. Thenodalvariablesemployedin the
thermalelementto describetheinterpolationarethe temperatures,0,at thefour comernodes.
Thestresselementhasradial,ur, and axial, uz, displacements at the eight nodes and hydrostatic

pressure, Pi, variables at each of the four integration points. The heating rates, r(t), are applied

at the four integration points.

HYSTERETIC HEATING IN RUBBER CYLINDERS

To investigate the application of the procedure described above, four cylinders were analyzed for

hysteretic heating. Only moderate temperature changes were simulated so the elastic material

constants were not treated as temperature dependent. Having the elastic constants independent

of temperature simplified the calculations presented in this effort, but it is not a limitation of the
algorithm.

CYLINDER DIMENSIONS AND MATERIAL PROPERTIES

There were two groups of two cylinders each. One group consisted of uniform cylinders and the

other group had steel disks at their centers, see Figure 2. All cylinders had the radius,

R=0.0282m. There were two cylinder heights in each group. The heights were

H = 0.05 m, and 0.0125 m respectively. The cylinders were compressed between steel fixtures.

The model simulates the case when a lubricant maintains the fixture-rubber interface as

frictionless. The internal steel disks were completely attached (bonded) to the rubber. The

height and radius of the disks were 0.0025 m, and 0.0141 m respectively.

The rubber energy density was modeled as a Neo-Hookean solid (Equation (3)). The viscous

behavior was described with one Prow term (Equation (4)). The material constants employed
are representative of a filled rubber and are listed below. 12-1s The viscoelastic constants for the

rubber are G o=2.310MPa,k 0=k =2.000*IOZMPa, g=0.3, k=O.0MPa, andv=0.1s.

The elastic constants for the steel are Young's modulus E = 206.8 G Pa and Poisson's Ratio
v = 0.3. The film heat transfer coefficients for the rubber-air and rubber-steel interfaces are

hA = 5.44284J/(°C m s) and h s = 20934 J/(°C m s), respectively. The remaining thermal

/ /

material constants are shown in Table I.



PRESCRIBEDAXIAL DISPLACEMENTAND RESULTS

Thedeformationof thetall ( H = 0.05 m ) uniform cylinder subjected to an axial displacement is

shown in Figure 3. Since the boundary conditions are symmetric, only the half height (r, z)-

quadrant is shown. The mesh refinement near the top and outer edges is to accommodate the

heat transfer gradients at those locations. Each cylinder was subjected to an axial enforced

displacement that produced large strain hysteresis. The half height enforced axial displacement

for the tall cylinder is described as follows. The top end of the cylinder was ramped to a

displacement of - 0.0045 m in 0.05 s. The top end of the cylinder was then forced to follow the

prescribed axial displacement given by

Uz(t)= -0.0045 - 0.003 sin(40.84t)m (13)

The half height enforced axial displacement for the short cylinder is described as follows. The

top end of the cylinder was ramped to a displacement of - 0.001125 m in 0.05 s. The top end of

the cylinder was then forced to follow the prescribed axial displacement given by

Uz(t)= -0.001125 - 0.00075 sin(40.84t)m (14)

where t is the time in seconds. The loading and the displacement of the top of the cylinder are

shown in Figure 4 for a time interval of 1.0 s. As expected, the displacement curve demonstrates

viscoelastic softening. A number of analyses were performed to test the nonlinear elastic, the

viscoelastic, and the transient heat transfer finite element algorithms separately. Hand

calculations and finite difference calculations verified that the algorithms functioned correctly.

The thermal boundary conditions did not significantly affect the temperature fields computed.

The following analyses were performed, employing the dissipation function described above, to

investigate the non-uniform heating of rubber cylinders undergoing large strain dynamic
deformations.

Uniform Cylinders. The cyclic deformations given by Equations (13) and (14) were applied to

the tall and short uniform cylinders indicated by the dimensions given above. The temperatures,

at the center of the cylinders, (r = 0,z = 0), as a function of time for the first 20 s of loading are

shown in Figure 5. The frictionless rubber-fixture boundary condition allows the strains to be

uniform in the cylinder. Rubber is a poor conductor of heat and the fact that the cylinders heated

nearly uniformly regardless of height was expected.

Cylinders with Imbedded Disks. It is difficult to estimate hysteretic heating in rubber solids of

complex shape because coupled thermo-mechanical analyses are needed in regions of high strain

gradients. Tall and short cylinders with imbedded steel disks were cyclically loaded to simulate

the distribution of viscoelastic heating in a rubber solid when the deformations produce high

strain gradients. The results obtained appear reasonable. Figure 6 shows the meshes on the

reference and deformed shapes for the tall cylinder. The temperature distribution in the tall

block after 20 s of dynamic loading is shown in Figure 7. Temperatures at points A, B, C, and D

in Figure 7 are plotted as a function of time in Figure 8. The outer radial end of the internal disk

(point C) is predicted to heat much faster than the rest of the cylinder.



Similarresultswereobtainedfor theshortcylinders. However,thereweresomeconvergence
problemsthat were overcomeby re-meshingnearthetop outercornerof the steelinsert and
employinglower order displacementinterpolations(the four node displacementelementwas
employed.) Thetemperaturedistributionin the shortcylinderis shownin Figure9. Again,
Figure10showsthattheregionof highstraingradient,locatednearthe outerradialendof the
internaldisk(pointC),hasthemostrapidrisein temperature.

SUMMARY

Accurate predictions of the strain and temperature distributions in rubber components, employed

in dynamically loaded structures, are required to perform degradation studies. A procedure that

couples a viscoelastic large dformation stress analysis with a heat transfer analysis was described

with the use of the ABAQUS finite element code. A user subroutine was written to approximate

the time rate of energy dissipation per unit volume and to pass this data from the stress routine to
the heat transfer routine.

The thermo-mechanical heating of tall and short uniform rubber cylinders (without internal

disks) was computed using the coupling procedure. The viscoelastic material properties

employed are valid for large strain deformations of rubber. The time dependent strains in the

cylinders were uniform, and uniform heating was computed. The thermo-mechanical heating of

tall and short rubber cylinders, containing internal steel disks, was also computed. The internal

steel disks provided high strain gradients within the rubber cylinders and nonuniform hysteretic

heating was observed. The analyses performed suggest that the coupling procedure should be

considered for further development as a design tool for rubber degradation studies.
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APPENDIX

The following notation is included to assist the reader with the description of the ABAQUS finite

element algorithm for rubber viscoelasticity.

xi 0 = 1,2,3)
xi O"= 1,2,3)

x= x(X,t)

3x
F-

OX

J = det(V)

1

F=J 3F

B =FF r

1

gu

3gu
O_L=__

3x

gDv

A:B

fie vol = I :riD

& =o_--1 &v°lI
3

_1_Ip= "S
3

coordinates of a material point in the reference configuration.

coordinates of a material point in the deformed configuration.

vector mapping between the reference and deformed configurations.

deformation gradient.

determinate of F which measures volume change.

deformation gradient scaled for volume change.

left Cauchy Green strain tensor.

first strain invariant (adjusted for volume).

second strain invariant (adjusted for volume).

displacement.

gradient of displacement.

rate of deformation.

rate of deformation computed using virtual displacement gv.

scalar product of matrices A and B.

volumetric strain rate.

deviatoric strain rate.

pressure stress (hydrostatic).

10



TableI.

Thermalproperties.

Property
Conductivity,J� (°C m s) t¢ =

Rubber Steel

0.20934 45.83379

1000. 7849.Density, kg / m 3 p =

Specific heat, J/(kg °C) c = 2093.4 460.

Expansion, (°C) -1 a = 80. * 10 -6 12.* 10 -6

3_3_



FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Axisymmetric CAX8RHT element.

Rubber cylinder, finite element mesh, fixture, and steel disk.

Deformation of a tall uniform cylinder (H = 0.05 m).

Viscoelastic softening of a tall uniform cylinder (H = 0.05 m).

Increase in temperature as a function of time at the center of each uniform cylinder.

Deformation of a tall cylinder with an internal disk (H = 0.05 m).

Temperature distribution in a tall cylinder with an internal disk (H = 0.05 m).

Temperature as a function of time for a tall cylinder with an internal disk (H = 0.05m).

Temperature distribution in a short cylinder with an internal disk (H = 0.0125 m).

Temperature as a function of time for a short cylinder with

an internal disk (H = 0.0125 m).
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Figure 1. Axisyrnmetric CAX8RHT element.
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